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1. INTRODUCTION

This analysis entails the two-dimensional (2-D) time-dependent transverse-magnetic (TM)
electromagnetic (EM) scattering of dielectric objects of rectangular cross sections buried in a multilayer
lossy medium (grass and earth). The incident field is a Gaussian pulse which is reflected into the grass
and earth by one side of the detector situated 45° with respect to the earth-grass interface. As the
Gaussian pulse is spread into the earth, it encounters the buried objects and is reflected and scattered. The
scattered fields are detected by sensors at the bottom and other side of the detector (see Figure 1).
Frequency domain characteristics for the scattered signal can be obtained by Fourier transformation of the
time-dependent signal. The intent of this study is to generically analyze a 2-D high-frequency scattering
problem dealing with multimedia using absorbing boundary conditions (ABC) which can serve as a
starting point for a three-dimensional (3-D) case involving the same phenomena with additional
computational requirements necessitating the utilization of parallelization on a variety of parallel
architectures. This effort is not designed to exhaust all EM variations of detectors, sensors, and
multimedia applications nor to deal with land mine technology per se, but instead to capitalize on the
development of Maxwell’s equations to generate wave distributions and effects in a very general sense;
specific applications can be generated and interpreted based upon post-processing of the data produced

by the numerical scheme.

Generally, there are two time domain methods for solving EM scattering problems, i.c., the time-
domain finite-element (TD-FE) method suggested and studied by the group at the University of California
at Berkeley [1-4] and developed by Lee and Madsen [5], and the ﬁnite-differénce time-domain (FD-TD)
method suggested by Yee in 1966 [8] and developed by many authors [9-37]. The TD-FE method has
been primarily used for the scattering of buried objects especially where there is a simple medium, a single
scatterer, and a simply shaped detector [3,4]. The solution methodology is restricted since the
decomposition of the position of calculated field values into direct and reflected components is not easy
to complete for the multireflection case caused by multilayer media, multiple scatterers, or complex
detector configurations. Moreover, the FD-TD method can be applied to problems with complex structures
which are very difficult to solve with either analytical or other numerical methods. Hence, the FD-TD
method is suitable for solving EM scatterings that occur in multilayer media, multiple scatterers, and

complex detector configurations.
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Figure 1. Topology of scattering phenom




The problem just described is solved using the FD-TD method which has been implemented by means
of a simple FORTRAN program for numerical computations as done similarly by Mei [6] with the notable
exception that the solution methodology executed herein invokes a fractional step difference scheme as
demonstrated by Shang [7]. The scattered fields of buried rectangular dielectric objects, due to an incident
field composed of a reflected Gaussian pulse, can be effectively computed within reason.

In section 2, the mathematical and numerical background of the FD-TD approach is reviewed for the
simple case of 2-D TM excitation. Issues such as discretization of Maxwell’s equations for lossy media,
stability, simulation of ABC, scattered ficld formulation, and Gaussian pulse properties are also discussed.
The computer program simulates damping- and super-ABC, and the formation of a reflected Gaussian
pulse; a more detailed treatment of the boundary conditions and pulse generation should be consulted in

the references.
2. LITERATURE REVIEW

The FD-TD method proposed by Yee [8] is based on the direct solution of the time-dependent
Maxwell’s curl equations such that the central difference approximations are applied to both space and
time derivatives in the respective equations. Knowing the initial, boundary, and source conditions, the
resulting discretized equations are solved using a leap-frog time-marching procedure. EM wave
propagation and interactions are thus numerically simulated. In subsections 2.1-2.6, the details of the
algorithm are described.

2.1 Difference Equations and Node Distribution. The Maxwell’s equations govemning the propagation

of EM waves in an isotropic, homogeneous medium are as follows [3]:

—>
JH 1 =
= - _ E 1
—r pvx )
3F _ 1 - o
= _ H - . 2
—— 8[vx oE’] @

where p (permeability), € (permittivity), and ¢ (conductivity) may be functions of space.




For 2-D TM scattering problems, we may adapt a spatial lattice defined on a rectangular (x, y)

coordinate system. Equations (1) and (2) can then be written in x-y component form as follows [3.4]:

JdE, JdH JH

z = y - X - E
fot T dy %2 @)
9H,  JE, @
- T
9H, 3E,
Tl T ®

If an inhomogeneous medium with continuous variation of material constants was considered, then
& p, and 6 would have to be specified at each particular grid point. However, for a heterogeneous
medium where step changes of material constants occur at interfaces, equations (3)—(5) will need to be
modified to account for these spatial variations. If the magnetic component H, is normal to the interface

for the TM case, such modifications can be avoided.

2.2 Stability Condition. In order for the numerical solution to be stable, the following Courant
stability condition must be satisfied:

V_At< ! : ©)

where V,, is the velocity of light in the medium. When Ax = Ay = Az = Ah, equation (6) reduces to

Ah
V At S . )
3




For the 2-D case, the stability condition becomes

v ars Ab . - ®)

V2

It should be noted that V,, takes on the maximum velocity value in the case of a multimaterial problem.

2.3 Scattered Field Formulation. For an EM scattering problem, the total electric field can be
decomposed into incident and scattered fields, i.e.,

B = B 4 Ex, — ©)

where the incident field ]-3_:'“‘“ is defined to be the field which exists in the absence of the scatterer.

Therefore, the scattered field becomes

Ex =Fw -Fix (10)

Once the total and incident fields are found, the scattered field can be obtained.

2.4 Absorbing Boundary Conditions (ABC). There are several ways to approximate ABC for use in

numerical simulations; Fang’s Ph.D. dissertation [21] gives a very good explanation and account of these.
Two particular implementations developed by Mei and Fang [12] will be discussed here, i.c., super-ABC
[21] and damping ABC [22].

2.4.1 Super-ABC. Let us define a constant s such that

where ¢ is the speed of light in free space.




The time it takes an EM wave to transit one grid spacing in a medium with wave speed V, is

In the numerical approximation, we chose s for convenience so that the wave transits one grid spacing in
an integer number, m, of time steps At, and require that At satisfy the Courant stability criterion,
i.e., equation (8). Therefore,

Loom, (11)

where m is an integer.

The super-ABC is implemented in the following manner. First, the tangential electric field vectors
?; at each boundary point are set equal to the corresponding vector value one space step forward in the
direction of propagation and m time steps earlier, where m is determined by equation (11). Secondly, this
same procedure is applied to the tangential magnetic field vector s R at each boundary point. Third,
ﬁ: is calculated using the FD-TD method. Finally, the super-ABC is then summated using a weighted
average of two }—livalues; one used is I--fl (shifted) obtained by shifting ﬁ: in m time steps earlier to one
space step forward, and another is ﬁ: (FD-TD) calculated directly by the FD-TD method. Thus,

B, (TD - FD) + m H, (shified)

@D (12)

ﬁl(super—absorbing) =

2.4.2 Damping ABC. The basic idea of the damping ABC is to locate damping layers with proper
electric and magnetic loss characteristics just inside the physical boundaries. The loss coefficient is zero
at the inside of the damping layers but increases toward the outer boundary. The incident EM energy will
then be absorbed in these damping layers with little reflection. The appropriate scheme for
implementation in the FD-TD method is as follows [22]:




E™ = (1 - Aty) B™ (13)
n+1 n+1
HZ=(1-AanH 2, (14)

where the field values for E,) and ﬁl are obtained by the original FD-TD scheme with y=0. The
damping ABC is thus implemented by multiplying the fields _F:,) and ﬁl by (1 - At ) as indicated in
equations (13)—(14). Different functional forms of (1 — At ) result in different absorbing effects, e.g., the

case where a functional form like e is adopted.

This report considers the combination of both ABCs. Using this mixed boundary treatment, together
with a large enough computation domain, an accurate time-domain scattered field can be obtained which

can be used in the following Fourier transformation.

2.5 Gaussian Pulse. The excitation pulse used is Gaussian in shape, which has a smooth time
dependence. Its Fourier transform (spectrum) is also a Gaussian pulse centered at zero frequency. These
useful properties make this pulse shape a good choice for investigating the frequency-dependent
characteristics of the EM scattering from a buried object via Fourier transformation of the response to the
scattered pulse [19].

A Gaussian pulse, g(t.x), propagating in the +x direction in a given medium can be represented as the
following [19,20]:

2
X=X
[(t‘to)‘ v ]
g(t,x) = exp -

- , (15)

where V,, is the speed of the pulse in the specific medium and T is the period. The pulse has its

maximum at (X, to).




The Fourier transform, G(f), of g(t,x) has the form,
G(f) e exp| -*T2f2)]." (16)

The choices for the parameters T, t,, and x, are dependent upon the following two requirements:

« Requirement 1: For Ah < the smallest characteristic dimension of the structure and At satisfying the
Courant stability criterion, the Gaussian pulse must span a sufficient distance for adequate resolution of
the wave patterns, and (2) The spectrum of the pulse must be wide enough (or the pulse must be narrow

enough) to maintain a substantial value within the high frequency range of interest (i.e., 200-1,500 MHz).

The pulse width W is defined as the distance between the two symmetric points on the pulse (curve)
corresponding to 5% of the maximum pulse amplitude. Therefore, T (the period) can be determined from
the following [19]:

(=]
exp| - A2 ) |=exp(-3)  (=5%), an

(VmT)Z

or after rearranging terms,

w
1 || 2

T=|__— || -=]. (18)
{ﬁ] Va

(19)




« Requirement 2: The choice for X, and t, must be made such that the initial energization of the
excitation will be small and smooth. Although using the Gaussian pulse as the excitation source
significantly reduces the necessary amount of characteristic frequency computations, the Fourier transform
of the fields is very sensitive to time domain errors, especially to imperfect ABC errors.

2.6 Fourier Transform. The time domain signals received by sensors can be transformed to the

frequency domain signals as follows:

E’(0) = f E,*(t) exp(~jot) dt , (20)
[1]

where ® = 2nf.

After making the substitution @ = 2xf and casting the right-hand side of equation (20) in discretized

form, we have

N
E'(f) = ¥ Eexp(-i2nfnAt) , Q1)

n=i

where N = maximum number of time steps.
3. RESULTS

Two-dimensional TM EM scattering from buried dielectric objects due to a Gaussian pulse is
numerically solved using the FD-TD method with ABC. The scatterers are rectangular cross sections in
a multilayer media; the Gaussian pulse is reflected into a lossy "earth" by a finite, 45° plate. This plate
is the part of a detector that receives the EM signal. All of the results match very favorably with Mei [6]
notwithstanding the utilization of the fractional step finite difference scheme.

Figures 2—4 represent the spatial distributions of scattered field component E}(x.y) at certain time steps
for just a single land mine. The scattered field gradually diminishes and is then eventually dissipated with
increasing time steps as expected. Figures 5-10 also represent the spatial distributions of the scattered
field component at comparative time steps for both two and three distinct scatterers or land mines within
the lossy media. All carpet diagrams clearly illustrate the typical wave patterns expected under the
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simulated conditions as presented in this report, i.e., conductivity (s) for the air is 0, conductivity for the
earth is 0.01, conductivity for the grass is 0.005, and conductivity for the mines are 0, 0.02, and 0.008;
permeability (V « s/A « m) values ranged from 1 for air, 9 for earth, 5.5 for grass, and 2.3, 5.6, and 23.0
for the mines, respectively. The relationship between the scatterer shape and frequencies scattered is a
very complex situation and is well beyond the scope of this work. In addition, an analogous program can
be written for the transverse-electric (TE) case. Computation indicates that the difference of scattered
signals between single and multiple scatterers are considerably obvious from the point of view of both

time domain and frequency domain.
Furthermore, this work can also be extended to the case of 3-D EM scattering from single or multiple

scatterers with ABC or non-ABC. We are currently investigating the 3-D FD-TD case of this same

problem to run on a vector and parallel machine.
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